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Abstract 
Three-dimensional scene reconstruction is an important tool in many applications varying from 

computer graphics to mobile robot navigation. In this paper, we focus on the robotics 

application, where the goal is to estimate the 3D rigid motion of a mobile robot and to 

reconstruct a dense three-dimensional scene representation. The reconstruction problem can 

be subdivided into a number of subproblems. First, the egomotion has to be estimated. For 

this, the camera (or robot) motion parameters are iteratively estimated by reconstruction of 

the epipolar geometry. Secondly, a dense depth map is calculated by fusing sparse depth 

information from point features and dense motion information from the optical flow in a 

variational framework. This depth map corresponds to a point cloud in 3D space, which can 

then be converted into a model to extract information for the robot navigation algorithm. Here, 

we present an integrated approach for the structure and egomotion estimation problem. 

Introduction 
Recovering 3D-information has been in the focus of attention of the computer vision 

community for a few decades now, yet no all-satisfying method has been found so far. Most 

attention in this area has been on stereo-vision based methods, which use the displacement of 

objects in two (or more) images. The problem with these vision algorithms is that they require 

the matching of feature points, which is not easy for untextured surfaces. Where stereo vision 

must be seen as a spatial integration of multiple viewpoints to recover depth, it is also possible 

to perform a temporal integration. The problem arising in this situation is known as the 

"Structure from Motion" (SfM) problem and deals with extracting 3-dimensional information 

about the environment from the motion of its projection onto a two-dimensional surface [4].  

In general, there are two approaches to SfM. The first, feature based method is closely related 

to stereo vision. It uses corresponding features in multiple images of the same scene, taken 
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from different viewpoints. The basis for feature-based approaches lies in the early work of 

Longuet-Higgins [8], describing how to use the epipolar geometry for the estimation of relative 

motion. In this article, the 8-points algorithm was introduced. It features a way of estimating 

the relative camera motion, using the essential matrix, which constrains feature points in two 

images. The first problem with these feature based techniques is of course the retrieval of 

correspondences, a problem which cannot be reliably solved in image areas with low texture. 

From these correspondences, estimates for the motion vectors can be calculated, which are 

then used to recover the depth. An advantage of feature based techniques is that it is relatively 

easy to integrate results over time, using bundle adjustment [12] or Kalman filtering [5]. Bundle 

adjustment is a maximum likelihood estimator that consist in minimizing the re-projection 

error. It requires a first estimate of the structure and then adjusts the bundle of rays between 

each camera and the set of 3D points. 

The second approach for SfM uses the optical flow field as an input instead of feature 

correspondences. The applicability of the optical flow field for SfM calculation originates from 

the epipolar constraint equation which relates the optical flow u(u,v) to the relative camera 

motion (translation t and rotation ) and 3D structure, represented by the depth parameter d, 

in a non-linear fashion, as indicated by equation (1).  

 d ω tu Q ω Q t  (1) 

In [6], Hanna proposed a method to solve the motion and structure reconstruction problem by 

parameterizing the optical flow and inserting it in the image brightness constancy equation. 

More popular methods try to eliminate the depth information first from the epipolar constraint 

and regard the problem as an egomotion estimation problem. Bruss & Horn already showed 

this technique in the early eighties using substitution of the depth equation [3], while Jepson & 

Heeger later used algebraic manipulation to come to a similar formulation [7]. The current 

state-of-the art in SfM systems considers the construction of sparse feature-based scene 

representations, e.g. from points and lines. The main drawback of such systems is the lack of 

surface information, which restricts their usefulness, as the number of features is limited. In the 

past, optical flow - based SfM methods such as the famous Bruss & Horn [3] and Jepson & 

Heeger [7] algorithms were also mainly aimed at motion and structure recovery using very low 

resolution optical flows. With the increase in available processing power, however, the SfM 

community is now trying to address the dense reconstruction problem. The optical flow based 

SfM approaches are more suited to address dense reconstruction problem, as they can go out 

from the optical flow over the whole image field. This leads to an approach as sketched by 

Figure 1 showing two main input paths to the dense reconstruction: sparse epipolar 

reconstruction and dense optical flow estimation. 
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Figure 1: The general approach of the proposed dense 3D reconstruction algorithm: merging sparse information (epipolar 

geometry) with dense information (optical flow) 

In order to bring together the advantages of both sparse and dense SfM theorems, we will here 

try to fuse both methods into an integrated structure recovery algorithm. In the context of this 

research work, the situation with a static scene and a dynamic observer is envisaged. The 

constraint of the static scene can be lifted by incorporating an independent motions 

segmentation preprocessing algorithm, segmenting the recorded images according to different 

motion patterns. The SfM analysis is then performed once for each of the motion patterns. 

Sparse structure and motion estimation 

Feature Detection and Matching 

Every sparse structure from motion approach starts off with feature detection and matching to 

acquire the necessary input data for subsequent processing steps. The aim is to estimate the 

image locations of a point belonging to a certain 3D structure in different camera views. The 

landmark or feature point detection was usually performed with the Harris corner detector, but 

recently, the Scale Invariant Feature Transform (SIFT) is used more and more. A complete use of 

the SIFT approach has been presented in [10] for reliable point matching between different 

views of an object or scene. SIFT features are located at scale-space maxima and minima of a 

difference of Gaussian function. Since the vector of gradients consists of differences of intensity 

values, it is invariant to affine changes in intensity. Due to these advantageous properties, the 

SIFT feature detector was selected for our application. 

The proposed feature detection and matching method aims at combining the advantages of the 

SIFT descriptor (robust detector and descriptor) with the advantages of feature tracking, where 

features can be tracked over longer time spans. On the subject of feature tracking, our choice 
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went to an implementation of the Kanade-Lucas-Tomasi (KLT) Feature Tracking algorithm as 

proposed by Stan Birchfield in [2]. The Kanade-Lucas-Tomasi (KLT) Feature Tracking algorithm 

uses the window-based technique proposed in [9], because it is simple, fast, and gives accurate 

results if windows are selected appropriately. A hybrid feature matching algorithm was set up, 

beginning with a SIFT feature detection and description process. The detected features are then 

tracked by a KLT-based tracker.  

Structure and Motion Estimation 

The first step of the proposed structure and motion estimation procedure consists of an 

estimation of the optimal framerate using the Geometric Robust Information Criterion (GRIC), 

introduced by Torr in [11]. This step involves the computation of a scoring function evaluating 

the goodness of fit of the model. The optimal framerate for each frame is set to be the lowest 

time step for which the GRIC-scoring function for the fundamental matrix model provides a 

higher value than the GRIC-scoring function for the homography model. To come to one 

consistent framerate for the whole image sequence, a globally optimal framerate is calculated 

by taking an average of the individual optimal time steps for each frame. 

In a second stage of reconstruction, three-view geometry reconstruction is performed by 

estimating the trifocal tensors across image triplets. The trifocal tensor  1 2 3, ,T T T T  is a 3 x 

3 x 3 array of numbers that relate the coordinates of corresponding points or lines in three 

views. The trifocal tensor estimation algorithm takes as input 6 random correspondences across 

3 views, which are used by a non-linear estimation method to compute a first estimate of the 

trifocal tensor. In a following stage, the support for the proposed trifocal tensor is measured by 

counting the number of matches which follow the projection model proposed by the given 

trifocal tensor. This process is repeated numerous times and the trifocal tensor estimate with 

the largest number of inliers is chosen. In a final step, the trifocal tensor is re-estimated with a 

linear method by only taking into account the inlier correspondences. 

After the trifocal tensors are estimated, the fundamental matrices and camera matrices can be 

calculated by decomposing the trifocal tensor. The fundamental matrix F encapsulates the 

intrinsic geometry between two views. It is a 3 x 3 matrix of rank 2. It is straightforward to 

compute the fundamental matrices 
21F  and 

31F  between the first and the other views from the 

trifocal tensor, once the epipoles e’ and e’’ are known, following equations (2) and (3). 

    21 1 2 3' , , ''


F e T eT T  (2) 

  31 1 2 3'' , , 'T T T


   F e T eT T  (3) 
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The camera matrix P expresses the action of a single projective camera on a point in space in 

terms of a linear mapping of a homogeneous 3D scene point  , , ,
T

X Y Z TX  to a 

homogeneous 2D image point  , ,
T

x y wx . In homogeneous coordinates this mapping is 

written as x PX . In the general case, the camera matrix 3 3 3 1  
 

P K R t  is a 3 x 4 matrix of 

rank 3, made up of a camera calibration matrix K and a rotation matrix R and translation  vector 

t, relating the camera position and orientation to the world coordinate system. The camera 

matrices can be calculated from the trifocal tensor by applying equations (4): 

  

  

1 2 3

1 2 3

' , , '' '

'' '' '' , , ' ''T

   

   

  
 

P I 0

P e e

P e e I e e

T T T

T T T

 (4) 

The information enclosed in the estimated fundamental matrices is now employed to estimate 

the camera motion parameters. For this, the essential matrix 'TE K FK , which is the 

specialization of the fundamental matrix to the case of normalized image coordinates, is 

calculated from the fundamental matrix. As the essential matrix can also be written as 

 


E R t , it is clear that the rotation matrix and translation vector can then be estimated by 

applying singular value decomposition. A problem with this egomotion estimation process is 

that in general four different solutions are obtained. The correct estimate for rotation matrix 

and translation vector can be found back by imposing the constraint that reconstructed point 

locations must lie in front of both cameras. In a next step, the 3D structure data is 

reconstructed by triangulating all matched pixels to their 3D location. Nonlinear optimization is 

applied to estimate the point 3D location when multiple matches over time are available. 

Up until this point in the SfM estimation procedure, the 3D motion and 3D reconstructions 

between image triplets were unrelated. Multi view merging addresses this issue. Merging is 

achieved by estimating the relative scale between the estimated structures and estimating the 

space homography between the different cameras using a linear least squares method. This 

space homography is then applied to bring all reconstructions to the same projective basis. 

As a last step of the structure and motion estimation process, bundle adjustment is used to 

produce globally optimal 3D structure and camera motion estimates. This is achieved by 

minimizing the reprojection error, as expressed by equation (5), by a Levenberg-Marquadt non-

linear least squares algorithm, taking advantage of the sparse structure of the system matrices.  

  
2

points j frames

min ,
j

i

j j

E i i

i

d
 

 
P X

x P X  (5) 
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Dense structure and motion estimation 

The Optical Flow 

Optical flow is the distribution of apparent velocities of movement of brightness patterns in an 

image. Optical flow can arise from relative motion of objects and the viewer. Consequently, 

optical flow can give important information about the spatial arrangement of the objects 

viewed and the rate of change of this arrangement. The optical flow estimation technique 

applied here relates the image correspondence problem from optical flow to other modules 

such as segmentation, shape and depth estimation, occlusion detection and signal processing. 

Dense reconstruction 

To reconstruct a dense depth field, it is necessary to maximize the information which can be 

retrieved out of the given data. To tackle the various data inputs and constraints imposed on 

the depth reconstruction, energy based methods are very well suited. Here, we follow the 

approach proposed by Alvarez in [1]. Alvarez proposes an energy based approach to estimate a 

dense disparity map between two images. Each of the two input paths to the dense 

reconstruction process, as sketched by Figure 1, needs to be present in the constraint 

equations. However, only using this information would lead to problems at spatial (image) and 

temporal (movement) discontinuities. Therefore, an anisotropic smoothing term was added to 

preserve the depth discontinuities at image discontinuities. Here, we'll elaborate more on the 

different constraint equations which can be used for this purpose. 

The image brightness constraint is based upon the Lambertian assumption that corresponding 

pixels have equal grey values. To express this, Alvarez first derived a simplified expression for 

the disparity which is based upon the knowledge of the epipolar geometry, calculated before by 

the sparse structure and motion estimation algorithms. This formulation can be expressed as: 

          
2

1 1 2, , , ,I x y I x u x y y v x y      , (6) 

where I1 and I2 represent two image frames and  is a depth parameter to be estimated. The 

constraint above does not contain any diffusion terms in feature space. To increase the 

numerical stability, we add a regularization term. This term has to ensure that discontinuities 

and smooth areas are well preserved by the reconstruction process. We chose to use the Nagel 

and Enkelmann regularization model, as this method has already been proven successful in a 

range of independent experiments. The regularization term has the following form: 

     2

T
I     D  (7) 

Where D is a regularized projection matrix, leaving the energy functional to be minimized as: 
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1 2E d 



    , (8) 

where the integration domain is the image field and  is a regularization parameter. This 

formulation can be introduced into the Euler-Langrange equation. Eventually, we retrieve: 

         
      

  2

1 2

, , ,
, , , , 0

I x u x y y v x y
I x y I x u x y y v x y div D I

 
   



  
      

   (9) 

The Euler-Lagrange equation can be solved, provided that an initial condition is given, by 

calculating the asymptotic state. The initial condition is a backprojected depth map, which we 

calculate by inserting into equation (1) the dense optical flow estimate and the estimated 

motion vectors calculated earlier.  

Results 

 A comprehensive test & analysis environment 

The main problem in evaluating the performance of any 3D reconstruction algorithm, is the 

absence of quality ground truth data. Available data on the internet most often only consists of 

series of images with some camera data. In order to overcome this problem, we went out from 

an artificial 3D scene and added a well defined camera which we set up to follow a predefined 

trajectory. By doing so, we were able to control all variables - depth information, camera 

calibration data and camera motion - needing to be estimated by the structure estimation 

algorithms. We then made photorealistic renderings of the scene as seen by the camera at 

different timesteps. These renderings serve as base data for the image processing algorithms. 

Also the depth information was exported at this stage by constructing depth maps at each time 

frame. This was achieved by rendering all data as a single Rich Pixel Format (RPF) file. RPF is a 

multi-layered high precision data format developed for integrated 3D data storage. Figure 2 

shows the 3D model along with the camera trajectory and some frames together with their 

depth map rendering, taken from a 40-frame sequence. 

Based on this data, it is now possible to compute for any pixel of an image the ground truth 

corresponding pixel in any of the cameras. This allows us to extract useful data to analyze the 

calculation chain of the algorithm. For feature matching between two camera views, ground 

truth data can be provided by projecting the point in the first camera to its 3D location and by 

backprojecting this 3D point onto the image plane of the second camera. For epipolar geometry 

reconstruction, the ground truth camera matrices can be calculated based upon the ground 

truth motion data, which is also useful to analyze the accuracy of the egomotion estimation. 
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Figure 2: From left to right: the 3D wireframe and model and the camera trajectory used for the test environment (the 
original 3D model was developed by Jerome Vaucanson in Autodesk® 3D Studio Max®), photorealistic rendering and 

associated depth map rendering for some frames of the Seaside sequence 

This leads to a comprehensive testing and analysis workflow for the evaluation of SfM 

algorithms. Current approaches are mostly limited to the reconstruction one specific scene. It is 

firstly hard to quantify the accuracy of a 3D reconstruction on paper and secondly, this leads 

the way for tuning algorithms towards certain scenes. In our workflow, it is straightforward to 

change the 3D scene and to produce photorealistic images with ground truth data. It is our 

hope that with sound benchmarking techniques, the performance of different structure 

estimation techniques can be accredited in a more reliable fashion. 

Feature detection & matching 

Figure 3 shows the tracked correspondences, compared to the ground truth feature movement. 

 

Figure 3: Matches for the different feature points (blue), compared to the ground truth feature motion (green). 
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As can be noticed, the KLT-tracking algorithm performs very well. Only in the lower right 

quadrant of the image, the measurement somewhat differs from the ground truth movement 

due to the relatively large vertical motion field present in this quadrant, while in the other parts 

of the image, the motion field is mostly horizontal.  

Sparse reconstruction 

As results for the sparse reconstruction algorithms, we only show the estimated motion vectors 

on Figure 4, as these results show the applicability of the proposed multi-view reconstruction 

technique. Figure 4 shows respectively the translation and rotation vector for some camera 

views and compare them with the ground truth value. To obtain these results, we imposed an 

extra check in the algorithm such that all vectors acquire the dominant sign computed for the 

sequence. Doing so makes the translation and rotation vector converge to within an acceptable 

error margin of the ground truth value, except for one single camera where the estimate for 

the rotation vector is seriously wrong. 

 
Figure 4: Estimates of the 3D motion vectors for different camera views compared to the ground truth motion in green 

Dense reconstruction 

In order to preserve stability, we chose to use a semi-implicit numerical scheme to calculate the 

depth field iteratively. Figure 5 compares the obtained result from dense reconstruction to  the 

ground truth depth map. It is clear that artifacts are still visible, but the relative depths can be 

discerned very well. Calculation time for this estimation is about 5 minutes on a 3.0GHz CPU. 

 

Figure 5: The ground truth depth map and the depth map retrieved after dense reconstruction 
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Conclusions and future work 
In this paper, we proposed an approach towards dense depth reconstruction. The approach 

aims to combine the strength of the more robust feature-based structure from motion 

approaches with the spatial coherence of dense reconstruction algorithms. To achieve this, a 

variational framework was set up, minimizing the epipolar reprojection error and the image 

brightness constraint, while preserving discontinuities in the depth field by introducing an 

anisotropic diffusion term. The dense optical flow information is backprojected and serves as 

initial guess for the iterative solver. The resulting depth maps can serve a very useful input for a 

robot navigation planner as they provide rich information about the environment. Using this 

data for robotic navigation tasks in outdoor environments will be one of the first issues to 

address with respect to future work. 
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